乡镇公务员行政职业能力测验数量关系:特值法解多者合作_中公网校
400-900-8885

乡镇公务员行政职业能力测验数量关系:特值法解多者合作

行测数量关系中的工程问题研究的是工作中总量、效率和时间三者之间的关系。其中,基本公式为:工作总量=工作效率×工作时间。多者合作题型研究的是多个主体通过一定方式合作完成工作的问题。因为主体增加,工作形式不再单一,所以解决多者合作题型,关键在于梳理出题干描述的不同的合作方式,并结合题干信息将未知量设为特值从而简化运算。下面中公教育就为大家讲解多者合作中设特值的三种方式。

一、已知多个主体的完工时间时,可设工作总量为1或为完工时间的最小公倍数

例1

一项工程,甲单独做需要10天,乙单独做需要15天。若甲、乙两人合作,需要多少天?

A.5 B.6 C.7 D.8

方法二,设工程总量为10、15的最小公倍数30,则甲的工作效率为3,乙的工作效率为2,甲、乙两人合作的效率为3+2=5,故甲、乙两人合作完工需要30÷5=6天。故本题选B。

二、已知多个主体效率关系时,一般根据效率关系将效率最简比设为份数

例2

甲、乙两队完成一项工程的效率比为2:5。该项工程,若由甲队先单独做3天,再由乙队单独做4天,最后由甲、乙两队合作6天刚好完成。问若由甲队单独完成,需要多少天?

A.3 B.33 C.34 D.35

【答案】C。中公解析:方法一,设甲、乙两队的工作效率分别为2x、5x,甲队单独完成需要t天,则根据工作总量一定可得,2x×3+5x×4+(2x+5x)×6=2xt,解得t=34。故甲队单独完成需要34天。故本题选C。

方法二,设甲、乙两队的工作效率分别为2、5,甲队单独完成需要t天,则根据工作总量一定可得,2×3+5×4+(2+5)×6=2t,解得t=34。故甲队单独完成需要34天。故本题选C。

三、已知多个主体的效率相同时,一般设每个主体的效率均为1

例3

某农场有36台收割机,要收割完所有的麦子需要14天时间,现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率5%。问收割完所有的麦子还需要几天?

A.3 B.4 C.5 D.6

【答案】D。中公解析:设原来每台收割机的工作效率是1,则改造后的效率为1.05。剩下7天剩余的工程量为36×7,而此后的效率为40×1.05,

以上便是特值法在多者合作题型中的应用,根据不同的题干描述去设特值,从而简化运算。中公教育希望考生们可以掌握此方法,获得收获。

(责任编辑:李明)

直播公开课
网校师资
会员免费专区
会员特惠专区

日利奇之5-20下,学生用户胡

  • 年度会员年度会员 ¥68
  • 终身会员 ¥198
尊享12大会员特权
  1. 好课免费

人工咨询

全国统一咨询热线

400-900-8885

课程咨询请按1
售后服务请按2
9:00-21:00 节假日不休

商务合作

企业微信

微信扫码添加

考编考证必备小工具
中公网校小程序
精选免费公开课
中公网校视频号
中公教育官方网课平台
中公网校极速版APP
资讯答疑试题
中公网校公众号

Copyright©2000-2023 北京中公教育科技有限公司 .All Rights Reserved

京ICP备10218183号-41 京ICP证161188号  京公网安备11010802020664号 电子营业执照