行测排列组合问题的三种常用解题方法_中公网校
400-900-8885

行测排列组合问题的三种常用解题方法

排列组合问题是行测数量关系中的常型,同时也是比较特殊的题型。研究问题的方法与以前题目都有所不同,因此很多小伙伴看到题目会觉得无从下手,做起来还是有一定的难度。今天中公教育就结合题目特征运用一些解题方法更好解决此类题目。

一、优限法

对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其他元素(或位置)。

例1:一次会议某单位邀请了10名专家,该单位预定了10个房间,其中一层5间、二层5间。已知邀请专家中4人要求住二层、3人要求住一层、其余3人住任一层均可。那么要满足他们的住房要求且每人1间,有多少种不同的安排方案?

A.75 B.450 C.7200 D.43200

 

 

二、捆绑法

在解决某几个元素要求相邻的问题时,优先整体考虑,将要求相邻的元素进行捆绑视作一个大元素,与其他元素进行排序,然后再考虑大元素内部各元素间顺序。

例2:为加强机关文化建设,某市直机关在系统内举办演讲比赛,3个部门分别派出3、2、4名选手参加比赛,要求每个部门的参赛选手比赛顺序必须相连,问不同参赛顺序的种数在以下哪个范围之内?

A.小于1000 B.1000~5000 C.5001~20000 D.大于20000

 

 

三、插空法

插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。

例3.由数字1、2、3、4、5、6、7组成无重复数字的七位数,求三个偶数互不相邻的七位数的个数。

A.360 B.720 C.1440 D.2880

 

 

方法总结

通过以上例题讲解,相信大家对排列组合常用的三个小方法有了一定的了解。优限法要在排序过程中先考虑有限制条件的元素或位置,简单来说就是谁有要求我们就先考虑谁。捆绑法用于题干中有元素要求相邻,也就是说哪些元素要求相邻就哪些把元素进行捆绑。插空法与捆绑法正好相反,用于题干中有元素要求不相邻时,用不相邻的元素插空。不论对于哪类题型,简单或困难,都需要在平时多做同类型题目,勤加练习,这样才可以在做题过程中灵活运用所学方法。心动不如行动吧!

(责任编辑:李明)

直播公开课
网校师资
会员免费专区
会员特惠专区

即日起,享受会员权益

  • 终身卡¥122
  • 年卡¥42
  • 月卡¥39.9
尊享12大会员特权
  1. 会员免费
  2. 会员优惠
  3. 专属顾问
  4. 专业团队
  5. 专属优惠
  6. 前沿分析
  7. 职业规划
  8. 就业指导
  9. 福利活动
  10. 会员售后

人工咨询

全国统一咨询热线

400-900-8885

课程咨询请按1
售后服务请按2
9:00-21:00 节假日不休

商务合作

企业微信

微信扫码添加

考编考证必备小工具
中公网校小程序
精选免费公开课
中公网校视频号
中公教育官方网课平台
中公网校极速版APP
资讯答疑试题
中公网校公众号

Copyright©2000-2023 北京中公教育科技有限公司 .All Rights Reserved

京ICP备10218183号-41 京ICP证161188号  京公网安备11010802020664号 电子营业执照